
} w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

Object-oriented Graphics Architectures for
Global Illumination

by

Jiří Sochor
Radek Oslejšek

FI MU Report Series FIMU-RS-98-08

Copyright c© 1998, FI MU December 1998



Object{oriented Graphics Architectures

for Global Illumination

Jiøí Sochor∗, Radek Oslej¹ek

Masaryk University, Faculty of Informatics

Botanická 68a, 628 00 Brno, Czech Republic

December 1998

Abstract

The paper presents several examples of object-oriented graphics

architectures derived from OO Testbed for Global Illumination. A

new architecture based on explorer{with{map paradigm is described

and projected on serial HW architecture of Cohen&Demetrecsu.

1 Introduction

Special graphics architectures developed mostly in eighties and in the �rst

half of nineties are distinctively functionaly oriented. New methods of global

illumination emphasize the broadening gap between HW and SW evolution.

To compute realistic image we use the entire computing power of universal

processor. Time consuming algorithms solve light equation numerically for

every picture element (pixel or subpixel) and resulting image is then com-

posed with the minimum assistance of graphics accelerator. Special HW is

utilized only to write new pixel values to image memory and to return indi-

vidual pixel values for subsequent processing. A good example is OpenGL

architecture - recall how much of its power is in fact used for raytraced scenes.

∗
Supported by Grant No. 201/98/0352, Grant Agency of Czech Republic

1



When examining di�erent OO implementations of graphics systems and

libraries we �nd that objects and abstract classes are used mainly for mod-

elling part. Such system usually provides abstract solids, materials and lights,

from which the specialized classes are derived and instantiated to objects

forming the scene. Objects generate drawing primitives using some kind of

RenderSelf method. Rendered points are stored directly to frame&depth

bu�er, multipixel primitives pass through the standard 3D graphics pipeline.

Pipeline solves smooth interpolated rendering of simple drawing primi-

tives, whose geometry and color can be processed e�ciently with fast inter-

polators. The idea originates in seventies and the resulting architecture is

thus partitioned to serialy connected function blocks. Data stores attached to

processes (functional blocks) save optional parameters for relevant functional

transformation. This arrangement obviously cannot solve global illumination

as the every single step in pipeline uses only local relations between prim-

itives and lights. Simpli�ed result of analysis reveals typical arrangement

of functional block depicted as data 
ow diagram ([Your89]) in Figure 1a.

Naive conversion from DFD to OO yields pseudo object with triad of meth-

ods SetState, GetState, Transform and weakly 1 encapsulated attributes -

Figure 1b.

Figure 1: a) Processes and data store b) "Pseudo object" in pipelined pro-

cessing

Transforming traditional program structures to objects this way is straight-

forward, but it violates rules and recomendations that make OO technology

1SetState, GetState methods serve for direct access to the parameters.

2



powerfull. Such conversion preserves original function oriented structure and

it brings nothing new.

The importance of OO architectures has been recognized long time ago.

The growing number of OO aplications and the vision of reused SW objects

to be sold on demand from catalog calls for the uni�ed architecture con-

cept applied at all system levels. This work wants to emphasize the above

mentioned discrepancies and to reveal uniform view of OO HW and SW

architectures.

2 Previous work

Graphical entities may be often found in OO literature as examples of multi-

layered class hierarchies. These hierarchies tend to organize graphical objects

to the classes that share either the same type of model (implicit surfaces,

parametric surfaces, B-rep primitives) or the same type of access methods

(constructors, manipulators) or both ([Egbe92],[Slus96]). Several authors

designed object-based renders suitable for implementation of broad classes

of geometry and lighting methods. As an example see [Fell95, Fell96], that

describes Minimum Rendering Tool{MRT. Architecture uses part-of hierar-
chy Scene-Object-Surface where Surface is a base class for all illumination

models. Object Image is an agent using Camera that controls the main loop

over all pixels. It communicates with IllumScene containing several Lights.
Other approaches exploit some kind of physically based rendering architec-

ture. Slusallek and Seidel [Slus95] use abstract class GeoObject specialized
to Surface and Volume classes, LightSourceShader, Shader, VolumeLighting

and Lighting. The resulting Vision architecture replaces explicit knowledge

neccesary for global illumination with local propagation methods that use

only direct communication between the entities. Classes View, Camera and

Film take care of image description that is strictly separated from scene

description.

The work presented in this paper was inspired primarily by SW architec-

ture described in [Chen95]. We will shortly review the features of architecture

in the next section.

3



3 Testbed for Global Illumination

Any rendering system contains three fundamental parts: geometry, display

architecture and shading methods. This the starting point of the "Testbed for

global illumination" described in [Chen95]. For the short review of this ar-

chitecture, following examples and derived architectures we employ notation

of FUSION method [Cole94] - object models (OM) and object interaction

graphs (OIG).

Display architecture exploits camera based projection methods and hid-

den surface ellimination in image space. Shading methods are closely related

to surface properties and can have both local and global scope. A basic object

of testbed is Scene. It encapsulates 3D and 2D world objects organized in

part-of hierarchy: Frame, Camera, collection of RenderableObjects and col-

lection of Lights. Each RenderableObject contains instances of two objects:

Geometry and Shader. Geometry describes the shape of geometrical entities

the system is able to render. Shader takes over the most of functionality that

resided originaly in render. It is bidirectional in the sence that shader not

only can evaluate intensity at a surface point but also can deposit energy.

The communication between Shader and Geometry is accomplished through

dynamic object Neighborhood, an abstraction of the di�erential geometry at

a point on the surface of geometrical entity.

The Scene also de�nes display architecture, i.e. local or global illumina-

tion algorithms, viewing and lightning. The authors applied uni�ed approach

to renderables and lights - any Light contains instance of RenderableObject
and so it has Geometry that de�nes the shape of light and can be rendered

with Shader. The class Light has virtual method GiveIntensity, that returns

the intensity of light at given point in space. The part-of arrangement of

classes is show in Figure 2.

Scene is specialised according di�erent illumination methods. Virtual

method Render explores all renderables and projects visible surface points

to the plane of frame. For every visible RenderableObject it calls its "part-

of" object Shader and using either Collect or Deposit it takes or hands over
light energy. This is the core of experimental architecture that enables to

implement various rendering methods.

Some examples are described in following sections. To show the behaviour

of rendering architectures we use object interaction graphs. OIG illustrates

the cooperation among individual objects and collections of objects. Hier-

4



Figure 2: Object model - part{of class hierarchy

archical message numbering demonstrates sequential and possible parrallel

message passing.

3.1 Example I - Scene with local lighting

OIG in Figure 3 shows simple solution of specialised object RTScene that is
designed to render a scene with local illumination of visible objects. Visibility

and lighting are calculated for primary rays. Method Render �rst initiates

the states of relevant objects (frame, camera). (1)WhatCamera is used to

set the viewing transformation and ideal picture quality with respect to op-

tics parameters of "real" camera. RTScene implements standard ray-casting

algorithm. It adresses the collection of renderable objects with messages

(2)Intersect. When the intersections exist RTScene receives the "names" of

new Neighborhood objects representing intersection points and it selects the

appropriate surface point i.e. the closest one. (3)Collect message activates

internal Shader of selected object. The Shader calculates local lighting model

for the neighborhood with precalculated attributes - message (3.1)Inspect. It
may use "standard" shadow rays (3.2, 3.3) that �nd all visible lights and

their contribution to neighborhood intensity. Finally the overall intensity is

stored to frame bu�er with (4)Modify message.

5



Figure 3: OIG for local illumination - ray casting method

3.2 Example II - Ray tracing with secondary rays

RTScene can be easily adapted for recursive ray tracing method. OIG in

Figure 4 shows the principle:

Object Shader activated with message (3)Collect casts secondary rays

with respect to BRDF and Neigborhood of RenderableObject. The collec-

tion of secondary rays forms the (unorganized) queue and recursion is thus

replaced with iteration. RTScene takes over secondary rays with (3.3)In-
spectRay and ray tracing continues with the subsequent messages (3)Collect.

Every step of ray traycing adds some light energy to original pixel or subpixel

with (4)Modify(ImagePart).

Secondary rays have no special intelligency, they only store the state of

running computation. This version enables to control computation in several

ways: to limit the number and depth of secondary rays, to test the rays

importance and to use various adaptive antialiasing methods. The lights

included in collection of renderables are processed in the same way as other

objects and they pass their light energy also with Collect message.

6



Figure 4: OIG - ray tracing with secondary rays

3.3 Example III - Ray tracing with Ray objects

Di�erent solution uses dynamically created Ray objects. As shown in Figure

5 RTScene responds to message Render by casting primary rays. Every ob-

ject in Ray collection addresses renderable objects with (3)Intersect message

and it is responsible to select the appropriate intersection and neighborhood.

Shaders of renderable objects also cast the new Rays. Criteria terminating

computation are distributed both in rays and shaders and can be applied

locally. Ray is responsible to collect light intensity and to (5)Modify pixels

in frame. Compared with example II in previous section here Ray objects

have more sophisticated logic. They can be also specialised and use some

ray-coherent approaches, e.g. beam tracing.

3.4 Example IV - Radiosity

The Shader method (3)Deposit supports the computation of global illumi-

nation model with radiosity. It allows the object to store incoming energy

to Neighborhood and in accordance with the optical properties to emit the

part of this energy. Various combinations are possible but the architecture

o�ers cheap and easy solution especially for progressive radiosity. OIG for

the Scene with radiosity is in Figure 6.

Con�guration factors are computed using projection to frame&depth bu�er.

7



Figure 5: Ray tracing with Ray objects

Intermediate results are stored into a renderable object e.g. in the form of a

radiosity map. Progressive radiosity is computed as following:

Repeat

Find RenderableObject with the greatest deposited energy.

For all other objects:

Place camera to surface, that will receive the energy.

Project all objects with camera to ReceivingObject,

store projection in Frame.
// Frame&depth buffer is used for HSE//

Visible part of emitter determines config.factor.

Store the portion of energy with Deposit

in receiving object.

until (valid terminating condition).

Deposited energy may be used in further processing, e.g. when ray traycing.

3.5 Objects in 3D scene with sorting

Useful abstraction for 3D sorting used in graphical applications is explorer-

map analogy. More or less intelligent object Explorer is to ful�ll commands

8



Figure 6: Progressive radiosity - basic arrangement

(virtual methods) GoOn and GoBack. The method GoOn serves for walking

around the 3D scene in such a way that activating site (some controller or

agent) would get progressively all neccessary information (e.g. the names

of visible objects). In a trivial case (no map or when a new map of yet

unexplored area is completely blank) Explorer sends messages to all regis-

tered objects one by one without any sorting. The method GoBack returns

Explorer to some prede�ned or remembered starting point.

Sophisticated sorting methods based on computational geometry results

provide the sorting structures, which signi�cantly reduce the number of tested

and reported objects. These methods are based either on global space sub-

division done in preprocessing phase, or on dynamicaly maintained local

sorting structures. Object Explorer is designed at high abstraction level and

it serves as prototype - base class, that can be further specialized, i.e. trained

for more sophisticated behaviour. Scenario for sorted scene with explorer is

shown in Figure 7.

The dashed line in Figure 7 shows the traditional border that separates

HW and SW part of rendering system.

9



Figure 7: OIG - Architecture of scene with sorting

4 Architecture Cohen&Demetrescu

The foregoing examples indicate the interesting possibilites of OO SW ar-

chitectures. It is clear that such architectures o�er many possibilities for

experiments with rendering methods and that they can be used as a tool to

explore new and optimal OO architectures. In the next section we will try

to setup the analogous model for (parallel) HW architecture. As essencial

architecture we selected the generalised Cohen&Demetrescu architecture.

Architecture Cohen&Demetrescu belongs to the class of parallel architec-

tures of procesor/object type. The description and features may be found in

[Deme80]. Figure 8 shows this architecture in general form that allows MIMD

parallelism. Every processor gets object data and computes its contribution

to scene image. Data stream passing through serialy connected processors is

used to compose �nal image. The original design described one-pass genera-

tion of complete image, but we allow the more 
exible feedback loop closed

via frame bu�er.

Compositing architecture can work in many di�erent ways. The examples

of possible HW/SW architectures are listed below:

• Processors are specialized for certain object classes. Serially passing

data, pixels with color and depth are modi�ed by individual processors.

10



Figure 8: Generalized architecture Cohen&Demetrescu

One-pass antialising can be also applied.

• The �rst processor expands incoming pixel data to the group of sub-

pixels. This subpixel collection is processed step by step in chained

processors that may be optimized for di�erent types of primitives. Last

processor computes convolution �ltering and antialiased pixel data are

stored in frame bu�er.

• Processors use intermediate frame bu�ers to store some part of im-

age. Special composition blocks synchronously assemble �nal image

and store it to frame bu�er. Composition blocks solve visibility (using

pixel depth) and transparency (e.g. α-blending). Architecture dis-

tributes input primitives to slected processors according their speciali-

sation and workload (Figure 9).

Figure 9: Composition architecture

11



• Drawing primitives are de�ned as halfspaces F (x, y, z) ≤ 0 [Fuch85,

Fuch89]. Special pixel processors evaluate in constant time multip-

ixel regions covered by primitives. Result is again composed serialy

[Moln92].

Object interaction in generalized Cohen&Demetrescu architecture is de-

picted in Figure 10. It is similar to architecture in Figure 7, object Explor-

erwithMap is not shown here.

Figure 10: OIG - Rendering in generalized Cohen&Demetrescu architecture

5 SW and HW OO architecture overlay

We attempt to �nd convenient architecture, that would combine both the

principles of object oriented system design for realistic rendering and the

principles of parallel solution of graphic tasks in specialized architectures.

To demonstrate unifying approach with an example we chose architecture

with dynamic objects of class Ray, that uses the similar work breakdown

structure as the architecture RTScene (Figure 5). When we combine ex-

plorer/map architecture with raytracing architecture, we get the structure

12



with behaviour scetched in Figure 11. Object Scene is replaced by object

Painter, RenderableObjects contain Geometry and Shader as before. Shader

remains the part of renderable object, but it is accesable for UniversalShader

with the method (6)GetShader. Shading is derived from environment of point

in 3D space and renderable objects may undergo more shading methods.

Figure 11: OO architecture - scene with realistic rendering

Architecture o�ers at least two apparent places suitable for parallel so-

lution with a special HW architecture. Objects of type Ray and Geometry

form the (unorganized) queue of planned geometric tasks that are to �nd

intersection of some ray with the nearest surface ((3)Intersect). Here it is

possible to employ generalized Cohen&Demetrescu architecture composed of

ray processors and geometry processors.

Object ExplorerwithMap that is responsible for space sorting and search-

ing (maintaining and using map) activates relevant, but not neccessary vis-

ible renderable objects. Activated objects choose (are placed into) suitable

geometry processor and provide part of their geometry in GeomDescription

data. Temporary PartialGeometry objects are mapped to geometry proces-

sors that solve ray-geometry intersections. During serial processing the geom-

etry processors compute and select the nearest intersection with di�erencial

neigborhoods. The result is stored as ValidNeighborhood. This new object

13



stores also the description of original ray. ValidNeighborhood objects form

the second processing stream for specialized shading architecture. Universal-

Shader takes over ValidNeighborhood with (5)Inspect message, then asks for

object shader ((6)GetShader) and activates one or more shader processors.

Architecture may contain either several identical shaders or a combination

of special shaders e.g. for procedural or mapped textures. Shaders store

calculated pixel or region information to frame bu�er, but they also generate

new secondary rays with (7)CastRay. Assuming that ray besides geome-

try information contains also the data used for light energy integration this

architecture supports various global illumination techniques. Reorganized

architecture that uni�es OO description of all partial rendering methods is

in Figure 12.

Figure 12: OO architecture projected on parallel architecture

Model in Figure 12 shows one particular solution - OO design of RT

architecture. As we want in the future to follow the same philosofy for more

14



complex architectures we generalize the previous architecture to the form

shown in Figure 13.

Figure 13: Conceptual architecture for realistic rendering

The properties of the derived architecture are brie
y listed below:

1. Architecture consist of 3 main parts: ExplorerWithMap, GeometryArchi-
tecture, ShadingArchitecture. All parts are independent subsystems

with de�ned responsibilities, interface and behaviour. Objects can be

exchanged or modi�ed easily because they are loosely coupled.

2. The behaviour of each object and of complete architecture can be de-

scribed with short speci�cation.

3. All active objects can exploit parallel solution realized with general or

a special architecture.

4. Dynamic objects ValidNeighborhood facilitate asynchronous communi-

cation amid geometry tasks (intersections etc.) and integration tasks

(computation and composition of light contributions at surface and/or

image points).

5. Objects can be used in di�erent assemblage not only for derivates of

classical rendering methods but also for the systems with haptic feed-

back.

6 Conclusion and Further Work

We have presented an experimental OO architecture for the scenes with

global illumination. Design de�nes the fundamental classes that form the

15



base for detailed decomposition and can be easily augmented. Our goal is

to develop uniform architecture both for visualisation and haptics, i.e use

di�erential environments for force feedback computation.

References

[Chen95] Chen S.E., Turkowski K., Turner D.: An Object{Oriented
Testbed for Global Illumination. In: La�ra et al. (Eds.) Object{

Oriented Programming for Graphics. Springer{Verlag, 1995,

pp.155{166

[Cole94] Coleman,D. et al.: Object{Oriented Development. The FUSION

Method. Prentice{Hall,Inc., 1994

[Deme80] Demetrescu,S.: A VLSI Based Real Time Hidden Surface Elim-
ination Display System. Master's Thesis, Department of Com-

puter Science, CALTECH, Pasadena, CA, May 1980

[Egbe92] Egbert,P.K., Kubitz,W.J.: Application Graphics Modeling Sup-

port Through Object Orientation. In: COMPUTER, October

1992, pp.84-91

[Fell95] Fellner,D.W.: MRT - An Extensible Platform for 3D Image Syn-

thesis. Computer Graphics Lab., Dept. of Computer Science,

University of Bonn, Germany, Dec. 1995

[Fell96] Fellner,D.W.: Extensible Image Synthesis. In: Object-Oriented
and Mixed Programming Paradigms, Wisskirchen P., (Ed.), Fo-

cus on Computer Graphics, Springer, Feb. 1996

[Fuch85] Fuchs,H. et al.: Fast spheres, shadows, textures, transparen-

cies, and image enhancements in Pixel-Planes. Computer Graph-

ics,19,3,July 1985.

[Fuch89] Fuchs, H. et al.: Pixel-planes 5: A heterogeneous multiprocessor

graphics system using processor-enhanced memories. Computer

Graphics 23,3 (July), pp.79-88

16



[Gold86] Goldfeather,J.-Fuchs,H.: Quadratic surface rendering on

a logic-enhanced frame-bu�er memory. Computer Graph-

ics&Aplications,1,January 1986.

[Kede84] Kedem,G.-Ellis,J.: Computer structures for curve-solid classi�-

cation in geometric modelling. Technical report TR137, Depart-

ment of Computer Science, University of Rochester, May 1984.

[Kris94] Kristen,G.: Object{Orientation. The KISS Method. Addison{

Wesley, 1994

[Moln92] Molnar,S.,1992: Pixel
ow: High-speed rendering using image

composition. Computer Graphics 26, 2 (July), pp.231-240

[Port84] Porter,T.,Du�,T.: Compositing Digital Images. Computer

Graphics, 187(3): 253{259, July 1984.

[Poul92] Poulton,J.,Eyles,J.,Molnar,S.,Fuchs,H.: Breaking the Frame-

Bu�er Bottleneck with Logic-Enhanced Memories.
IEEE Computer Graphics&Applications, November 1992

[Riel96] Riel, A.J.: Object{Oriented Design Heuristics. Addison{Wesley,

1996

[Schn91] Schneider,B.: Towards a Taxonomy for Display Processors.

In: Strasser W.,Grimsdale R.L.(Eds.) Advances in Computer

Graphics Hardware IV., Springer{Verlag, 1991

[Slus96] Slusallek,P.,Klein,R.,Kolb,A.,Greiner,G.: An Object Oriented

Approach to Curves and Surfaces. In: Wisskirchen,P.(Ed.)

Object-Oriented and Mixed Programming Paradigms, Springer

Verlag, 1996

[Slus95] Slussalek,P., Seidel,H.P.: Vision - An Architecture for Global Il-

lumination Calculations. In: IEEE Trans. Visualization & Com-

puter Graphics 1(1), 1995

[Your89] Yourdon,E.: Modern Structured Analysis Yourdon Press,

Prentice{Hall, New York 1989.

17



Copyright c© 1998, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic


